Offres d’emplois et de stages // Jobs and internships offers
Les propositions de recrutements et de stages au CIRIMAT sont reportées ci-dessous.
Job opportunities in the laboratory are listed below
Please, visit this page regularly.
Les propositions de recrutements et de stages au CIRIMAT sont reportées ci-dessous.
Job opportunities in the laboratory are listed below
Please, visit this page regularly.
INGÉNIEUR(e) R&D – POST DOCTORANT(e)
Toulouse (31)
MOTS CLES : Aluminium ; Corrosion ; Conversion chrome trivalent ; Microstructure ; Électrochimie
1. Présentation de l’entreprise et de ses partenaires
L’IRT M2P est un centre de recherches mutualisées créé en juin 2013, associant des industriels et des établissements de recherches et d’enseignements supérieurs qui est positionné sur les technologies avancées d’élaborations, transformations et caractérisations des matériaux. Organisé en 3 pôles d’activités (Elaboration, Traitement et revêtement de surfaces, Composite & Assemblage), il compte aujourd’hui plus de 100 salariés répartis sur 4 sites (Metz, Porcelette, Uckange et Duppigheim).
Le CIRIMAT (Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux) est une Unité Mixte de Recherche (UMR CNRS INPT UT3 5085) qui compte environ 220 personnes hors stagiaires, dont un peu plus de 100 permanents, 75 doctorants et 35 post-doctorants, ATER et ingénieurs contractuels. Il a été créé en 1999 par fusion de 3 laboratoires et est structuré en 6 équipes depuis janvier 2021. Il regroupe les compétences toulousaines dans le domaine de la science et de l’ingénierie des matériaux, réparties sur 4 sites géographiques : 3 sur le campus Universitaire Toulouse-Rangueil (UT-Chimie, UT-Physique, UT-Pharmacie) et un sur le campus INPT-ENSIACET. L’équipe MEMO du Cirimat (Mécanique – Microstructure – Oxydation – Corrosion) a pour objectif de maintenir une expertise au plus haut niveau possible en solidification, transformations de phases à l’état solide, plasticité et comportement mécanique, oxydation à haute température et protection, corrosion et corrosion sous contrainte.
2. Contexte et objectifs :
Le projet APOLLO (Aluminium Protection through cOnversion without harmfuL hexavaLent chromium) dans lequel s’inscrit ce post-doctorat concerne l’optimisation du procédé de conversion chimique appliqué aux alliages d’aluminium employés par le secteur aéronautique. Le projet a deux objectifs principaux : l’amélioration des performances (notamment la robustesse) des conversions chimiques à base de CrIII/Zr ainsi que la poursuite du développement d’un procédé sans Cr. Historiquement, l’industrie aéronautique exploitait un procédé de conversion chimique à base de chrome hexavalent dont l’usage est interdit en Europe depuis septembre 2017 sans autorisation. Cette interdiction a conduit l’industrie aéronautique à rechercher et développer de nouveaux procédés plus respectueux de l’environnement et de la santé des employés. Ainsi, des procédés émergents à base de CrIII/Zr ont vu le jour au cours des 20-30 dernières années et ont fait l’objet de nombreux travaux de recherche dans l’optique de répondre aux exigences du secteur (amélioration de la résistance à la corrosion des alliages, maintien d’une résistivité électrique inférieure à 5 mΩ, compatibilité avec la mise en peinture). Néanmoins, pour pallier le manque de robustesse de ce nouveau traitement (en termes de tenue à la corrosion notamment), des travaux de compréhension, dirigés sur la préparation de surface (impact majeur sur les performances anti-corrosion) avant conversion chimique ont été initiés dans le projet APOLLO. Une alternative à l’utilisation complète du chrome pour la conversion chimique est également envisagée avec la poursuite des travaux autour d’une formulation exempte de chrome avec ou sans post-traitement. L’objectif de ce post-doctorat visera à mieux comprendre le rôle de la préparation de surface sur l’évolution de la microstructure des alliages d’aluminium et la résistance à la corrosion des couches de conversion formées à partir de procédés commerciaux à base de CrIII/Zr.
Objectifs :
L’objectif est d’analyser finement les interactions entre microstructure des alliages et tenue en corrosion des couches de conversion. L’étude visera à contribuer à l’optimisation des étapes de préparation de surface pour améliorer la tenue en corrosion des couches de conversion. Les travaux porteront en particulier sur l’alliage 2024 sous forme de tôles minces (état T3) et tôles épaisses (état T351) qui présentent des différences de microstructure telles que, de manière générale, les couches de conversion Cr III / Zr IV sont moins performantes sur les tôles à l’état T351. Il s’agira d’analyser la microstructure à l’échelle des particules intermétalliques grossières mais aussi des joints de grains, et d’étudier l’impact des différences observées entre les deux états métallurgiques sur les propriétés des surfaces après les étapes de préparation préalables au traitement de conversion pour, in fine, essayer de faire le lien avec la tenue à la corrosion des couches de conversion.
3. Description du poste et profil recherché
La personne recrutée doit être titulaire d’une thèse de doctorat en lien avec l’étude de la relation entre la microstructure des métaux et leurs propriétés. Elle devra démontrer une forte expertise dans l’analyse et la caractérisation des surfaces et/ou des phénomènes de corrosion, notamment via l’utilisation des techniques suivantes :
– Microscopie optique (MO), microscopie électronique à balayage (MEB), microscopie en transmission (MET) et microscopie à force atomique (AFM) ;
– Diffraction d’électrons rétrodiffusés (EBSD) ;
– Spectroscopie à dispersion d’énergie des rayons X (EDS) et spectroscopie de perte d’énergie d’électrons (EELS) ;
– Techniques électrochimiques : microscopie électrochimique à balayage (SECM) et spectroscopie d’impédance électrochimique (SIE).
Poste à pourvoir début 2026 pour une durée de 2 ans
et basé au laboratoire CIRIMAT avec des déplacements ponctuels à prévoir en France.
Pour nous transmettre votre candidature complète (CV avec des références et lettre de motivation), avant le mercredi 12 septembre 2025 :
– IRT M2P : Muriel SEYLER muriel.seyler@irt-m2p.fr
– IRT M2P : Alexis RENAUD alexis.renaud@irt-m2p.fr
– CIRIMAT : Christine BLANC christine.blanc@ensiacet.fr
R&D engineer – POST DOCTORAL position
Toulouse (31)
KEYWORDS : Aluminium ; Corrosion ; Trivalent chromium conversion ; Microstructure ; Electrochemistry
1. Presentation of the company and its partners
The IRT M2P is a shared research centre set up in June 2013, bringing together industrial companies and research and higher education establishments, and focusing on advanced technologies for the elaboration, transformation and characterisation of materials. Organised into 3 areas of activity (Elaboration, Surface Treatment and Coating, Composites & Assembly), it currently employs over 100 people at 4 sites (Metz, Porcelette, Uckange and Duppigheim).
Le CIRIMAT (Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux) is a Joint Research Unit (UMR CNRS INPT UT3 5085) with around 220 staff, excluding trainees, including just over 100 permanent staff, 75 PhD students and 35 post-doctoral students, ATERs and contract engineers. It was created in 1999 by the merger of 3 laboratories and has been structured into 6 teams since January 2021. It brings together Toulouse’s expertise in materials science and engineering, spread over 4 geographical sites : 3 on the Toulouse-Rangueil University campus (UT-Chimie, UT-Physique, UT-Pharmacie) and one on the INPT-ENSIACET campus. The MEMO team at Cirimat (Mechanics - Microstructure - Oxidation - Corrosion) aims to maintain the highest possible level of expertise in solidification, solid-state phase transformations, plasticity and mechanical behaviour, high-temperature oxidation and protection, corrosion and stress corrosion.
2. Context and objectives :
The APOLLO (Aluminium Protection through conversion without harmfuL hexavaLent chromium) project in which this post-doctorate is involved concerns the optimisation of the chemical conversion process applied to aluminium alloys used in the aerospace sector. The project has two main objectives : to improve the performance (particularly the robustness) of CrIII/Zr-based chemical conversions and to continue developing a Cr-free process. Historically, the aerospace industry used a chemical conversion process based on hexavalent chromium, the use of which has been banned in Europe since September 2017 without authorisation. This ban has led the aerospace industry to research and develop new processes that are more respectful of the environment and employee health. As a result, emerging CrIII/Zr-based processes have emerged over the last 20-30 years and have been the subject of much research work with a view to meeting the sector’s requirements (improving alloy corrosion resistance, maintaining electrical resistivity below 5 mΩ, compatibility with painting). However, to compensate for the lack of robustness of this new treatment (in terms of corrosion resistance in particular), work to understand surface preparation (major impact on anti-corrosion performance) prior to chemical conversion was initiated as part of the APOLLO project. An alternative to the complete use of chromium for chemical conversion is also envisaged with the continuation of work on a chromium-free formulation with or without post-treatment. The aim of this post-doctorate will be to gain a better understanding of the role of surface preparation on the evolution of the microstructure of aluminium alloys and the corrosion resistance of conversion layers formed using commercial CrIII/Zr-based processes.
Objectives :
The aim is to analyse in detail the interactions between alloy microstructure and the corrosion resistance of conversion layers. The study will aim to contribute to the optimisation of surface preparation steps to improve the corrosion resistance of conversion layers. The work will focus in particular on alloy 2024 in the form of thin sheets (T3 condition) and thick sheets (T351 condition), which have microstructural differences such that, in general, the Cr III / Zr IV conversion layers perform less well on sheets in the T351 condition. The aim will be to analyse the microstructure at the scale of coarse intermetallic particles and grain boundaries, and to study the impact of the differences observed between the two metallurgical states on surface properties after the preparation stages prior to conversion treatment, in order to establish a link with the corrosion resistance of the conversion layers.
3. Job description du poste and profile sought
The candidate must hold a doctoral thesis related to the study of the relationship between the microstructure of metals and their properties. They will need to demonstrate strong expertise in the analysis and characterisation of surfaces and/or corrosion phenomena, in particular through the use of the following techniques :
– Optical microscopy (OM), scanning electron microscopy (SEM), transmission microscopy (TEM) and atomic force microscopy (AFM) ;
– Electron Backscatter Diffraction (EBSD) ;
– X-ray energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) ;
– Electrochemical techniques : scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS).
This 2-year position will be based in the CIRIMAT laboratory and will be available from early 2026,
with occasional travel throughout France.
To send us your full application (CV with references and covering letter) before September 12, 2025 :
– IRT M2P : Muriel SEYLER muriel.seyler@irt-m2p.fr
– IRT M2P : Alexis RENAUD alexis.renaud@irt-m2p.fr
– CIRIMAT : Christine BLANC christine.blanc@ensiacet.fr
PhD proposal
Tuning the porous carbon / electrolyte interface for boosting their capacitive storage performance
Laboratory :
CIRIMAT, UMR CNRS 5085, Université de Toulouse, France.
PhD Supervisors :
Patrice Simon, patrice.simon@univ-tlse3.fr
Pierre-Louis Taberna, pierre-louis.taberna@univ-tlse3.fr
Context
The PEPR Batteries is a 50-million national R&D program funded by France 2030. Started last January 2023, it is led by Hélène Burlet (CEA) and Patrice Simon (UT3). The PEPR has launched 13 research projects, including the “High Power and Hybrid Batteries” (HiPoHyBat) project, where the PhD research program will be achieved. The HiPoHyBat project gathers together several key labs on batteries in France such as CEA, IS2M (Mulhouse), LRCS (Amiens), Collège de France (Paris), IEMN (Lille), IMN (Nantes), ICGM (Montpellier).
The design of new materials as alternatives to design high-power devices, with fast-charging capability is today a major challenge in the battery landscape. Electrochemical capacitors (ECs) are another major family of ESS with electrical performance complementary to that of batteries [1,2]. ECs store the charge via fast, surface-confined processes which can be electrostatic or faradic in nature, that explains why they can harvest higher power than batteries but contain lower energy density, resulting in an operation time of tens of seconds to minutes.
Today, the main challenge for EDLC is to increase their energy density. While several routes have been proposed in the literature to achieve this goal, in this PhD, we propose to follow two main research axes with i) the formation of an artificial SEI-like layer or semi-conducting coating onto the carbon surface to increase the operating voltage and ii) play with the porous carbon potential of zero charge / local carbon ordering to increase the charge storage capacitance.
1 Artificial Passive Layer :
The objective is to increase the cell voltage of (porous) carbon electrodes to drastically improve their energy density by using new approach via the modification of the active material / electrolyte interface by creating tailored-made thin-film electrically insulating but ionically conducting. This approach is inspired from the solid electrolyte interphase (SEI) passivation layer formed onto negative electrode of Li-ion batteries. More specifically, we will focus on the deposition of Si-based and PVDF-based ionogel electrolytes. Ionogels are solid-state like electrolytes composed with a PVDF polymer matrix or an inorganic SiO2 matrix (or polymer) prepared by sol-gel reaction entrapping ionic liquid salt (EMI,TFSI for instance). Ionogel precursors can be casted onto the carbon surface to prepare single- or multi-ion conducting layer with hydrophilic (hydrophobic) properties for operation in non-aqueous (aqueous) electrolytes, thus blocking the redox activity of the solvent molecules (see sketch below). The careful selection and matching of the carbon host structure and ionic liquid salt properties (hydrophobic vs hydrophilic) will allow for enlarged operating voltage window. A proof of concept was demonstrated by one partner, where the porous carbon electrode coated with [SiO2-EMI,TFSI] ionogel passive layer could be successfully operated up to 1.8 V in aqueous EMI,HSO4 electrolyte [3]. Possibilities offered by this approach are huge considering the existing combinations of carbon porous structures / inogel and / electrolyte compositions.
2. Potential of zero charge and carbon structure :
Since our discovery of the capacitance increase in carbon nanopores (< 1 nm pore size) [2,4], a lot of work has been done by many research groups in the world. The capacitance increase was attributed to partial ion desolvation in these nanopores, following the decrease of the approaching distance of the ion to carbon surface [2]. Recently, a paper in the Science journal has been published (Science 2024 [5]) proposing the local carbon ordering as the main contribution to the capacitance increase. However, the specific interactions between the carbon surface and the electrolyte can be depicted using the Potential of Zero Charge (pzc) parameter, which is the potential where the net surface charge of the carbon is zero. The pzc defines the border between two different ion fluxes : the charge storage will mainly involve cations for potentials below the pzc and anions above pzc, with an ion exchange zone around pzc. The pzc is then an additional descriptor that should be considered along with the surface area, pore size, and structural ordering, as they can influence the capacitance in porous carbons [6]. A part of the PhD work will be dedicated to study the influence of the pzc on the charge storage and charge storage mechanism in nanoporous carbons. We will tune the surface chemistry to adapt the pzc value to increase the capacitance of the carbon such as we recently demonstrated using rGO model materials [7].
Start :
November 2025, for three years.
Skills
The applicant will have a solid background in materials sciences, synthesis and haracterizations. Knowledge in electrochemistry would be appreciated.
Gross salary :
1,800 euros per month
References
[1] “Perspectives for electrochemical capacitors and related devices” P. Simon and Y. Gogotsi, Nature Materials 2020, 19 (11), 1151-1163.
[2] “Nanoporous carbon for electrochemical capacitive energy storage” H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna and P. Simon, Chemical Society Reviews, 2020, 49, 3005-3039.
[3] “An Artificial Interface for High Cell Voltage Aqueous-Based Electrochemical Capacitors”, M Olarte, MJ Menu, P Simon, M Gressier, PL Taberna, Journal of The Electrochemical Society 168 (2021), 070520.
[4] "Anomalous increase in carbon capacitance at pore size below 1 nm" J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P.L. Taberna, Science, 313 (2006) 1760-1763.
[5] “Structural disorder determines capacitance in porous carbons“ X. Liu et al., Science 384 (2024) 321-325
[6] “Advanced characterization of confined electrochemical interfaces in electrochemical capacitors” K. Ge, H. Shao, Z. Lin, P.L. Taberna, P. Simon, Nature Nanotechnology 20, 196–208 (2025) ; 10.1038/s41565-024-01821-z
[7] “Cation Desolvation-induced Capacitance Enhancement in Reduced Graphene Oxide (rGO) K. Ge, H. Shao, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, Nature Communications (2024) 15, 1935.